
本文是《PyTorch官方教程中文版》系列文章之一,目录链接:[翻译]PyTorch官方教程中文版:目录
本文翻译自PyTorch官方网站,链接地址:DATASETS & DATALOADERS。
处理样本数据的代码可能会变得混乱并且难以维护,因此我们希望数据集代码和模型训练代码分离,并形成模块,这样可以获得更好的代码可读性和可维护性。PyTorch提供了两个数据处理工具,torch.utils.data.DataLoader和torch.utils.data.Dataset,她们允许您使用预加载的数据集和您自己的数据集。Dataset存储样本数据及其标签,DataLoader是为Dataset包装的一个迭代器,以便轻松访问样本。
PyTorch 提供了许多预加载的数据集(如 FashionMNIST),这些数据集对 torch.utils.data.Dataset 进行了子类化并实现了针对特定数据的函数。它们可用于对模型进行原型设计和基准测试。您可以在此处找到它们:
加载数据集
下面是如何从TorchVision加载Fashion-MNIST数据集的示例。Fashion-MNIST是Zalando文章图像的数据集,由60000个训练样本和10000个测试样本组成。每个样本都包含一个 28×28 灰度图像和类别标签,类别标签共有10个类别。
我们使用以下参数加载 FashionMNIST 数据集:
- root 存储训练/测试数据的文件夹路径
- train 指定训练或测试数据集
- download=True 当数据不在root文件夹中时从互联网下载数据
- transform和target_transform 指定对特征和标签的转换操作
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
上述代码输出:
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0/26421880 [00:00<?, ?it/s]
0%| | 65536/26421880 [00:00<01:12, 365358.60it/s]
1%| | 229376/26421880 [00:00<00:37, 690119.31it/s]
3%|3 | 917504/26421880 [00:00<00:09, 2633670.73it/s]
7%|7 | 1933312/26421880 [00:00<00:05, 4129539.15it/s]
18%|#7 | 4751360/26421880 [00:00<00:02, 10486330.34it/s]
25%|##5 | 6619136/26421880 [00:00<00:01, 11684504.34it/s]
31%|###1 | 8224768/26421880 [00:00<00:01, 12128993.20it/s]
42%|####1 | 10977280/26421880 [00:01<00:00, 16013377.41it/s]
49%|####8 | 12910592/26421880 [00:01<00:00, 15511753.35it/s]
55%|#####5 | 14581760/26421880 [00:01<00:00, 14957666.46it/s]
66%|######5 | 17432576/26421880 [00:01<00:00, 18292981.11it/s]
73%|#######3 | 19365888/26421880 [00:01<00:00, 17404421.14it/s]
80%|######## | 21200896/26421880 [00:01<00:00, 16204692.36it/s]
90%|######### | 23887872/26421880 [00:01<00:00, 18908460.97it/s]
98%|#########7| 25886720/26421880 [00:01<00:00, 16318288.68it/s]
100%|##########| 26421880/26421880 [00:01<00:00, 13341798.80it/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0/29515 [00:00<?, ?it/s]
100%|##########| 29515/29515 [00:00<00:00, 329362.59it/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0/4422102 [00:00<?, ?it/s]
1%|1 | 65536/4422102 [00:00<00:11, 365137.29it/s]
5%|5 | 229376/4422102 [00:00<00:06, 686965.65it/s]
16%|#6 | 720896/4422102 [00:00<00:01, 1982015.98it/s]
34%|###4 | 1507328/4422102 [00:00<00:00, 3184989.06it/s]
68%|######8 | 3014656/4422102 [00:00<00:00, 6236092.95it/s]
100%|##########| 4422102/4422102 [00:00<00:00, 5453752.65it/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0/5148 [00:00<?, ?it/s]
100%|##########| 5148/5148 [00:00<00:00, 47770524.32it/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
遍历和可视化数据集
我们可以使用索引访问数据集:training_data[index]。我们使用matplotlib来可视化数据集中的一些样本。
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")
plt.show()
上述代码运行效果:

创建自定义数据集
自定义数据集类必须实现三个函数:__init__、__len__和__getitem__。参考下面这个实现,FashionMNIST图像存储在目录img_dir中,其标签单独存储在CSV文件annotations_file中。
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
__init__函数
__init__函数在实例化数据集时执行一次,在__init__函数中,我们初始化了图像目录、标签数据和两个转换(下一节将更详细地介绍)。
labels.csv文件的内容类似这样:
tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
__len__函数
__len__函数返回数据集中的样本数量。
__len__示例:
def __len__(self):
return len(self.img_labels)
__getitem__函数
__getitem__函数加载并返回数据集中位于索引 idx 处的样本。__getitem__函数首先根据索引,计算出图像在磁盘上的位置,使用 read_image 函数加载图像并转换成一个张量;然后__getitem__函数从self.img_labels中检索出图像对应的标签;最后__getitem__函数调用转换函数,并将图像和标签以元组的形式返回。
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
使用DataLoader准备训练数据
Dataset一次性保存了样本的特征数据和标签。在训练模型时,我们通常希望以“小批量”的方式传递样本。为了减少模型的过拟合,在每个训练周期开始前都会打乱样本的顺序,并使用Python的multiprocessing来加速数据的处理过程。
DataLoader 是一个迭代器对象,它通过抽象简单的 API 隐藏了复杂的内部实现的。
from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
遍历DataLoader
一旦将数据加载进DataLoader,就可以在需要时遍历数据。下面代码中的的每次迭代都会返回一批train_features和train_labels(分别包含 64 个特征和标签)。因为我们指定了 shuffle=True,所以在我们迭代所有批次后,数据将被打乱(如果要更细粒度的控制数据加载顺序请查看 Samplers)。
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")
上述代码执行效果:

上述代码输出:
Feature batch shape: torch.Size([64, 1, 28, 28])
Labels batch shape: torch.Size([64])
Label: 5
进一步阅读
芸芸小站首发,阅读原文:http://xiaoyunyun.net/index.php/archives/269.html